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Abstract 

In regression analysis, one of the main challenges is selecting a single model among competing models when 

making inferences. Likewise, the issue of the choice of prior distribution has been delicate in data analysis. 

Informative prior distributions related to a natural conjugate prior specification are investigated under a limited 

choice of a single scalar hyperparameter called g-prior, which corresponds to the degree of prior uncertainty on 

regression coefficients. This research identified a set of 11 candidate default priors (Zellner’s g-priors) 

prominent in the Literature and applicable in Bayesian model averaging. Some new sets of g-prior structures 

were investigated with a view to proposing an improved g-prior specification for regression coefficients in 

Bayesian Model Averaging (BMA) and the predictive performance of these g-priors were compared. Results 

obtained include the respective prior distributions, posterior distributions and sampling properties of the 

regression parameters, based on the new set of g-prior structures investigated. Also, empirical findings revealed 

that the proposed g-prior structure exhibited equally competitive and consistent predictive ability when 

compared with identified g-prior structures from the Literature.  
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Introduction 

Research on Bayesian methodology and applications 

has progressed remarkably in the past few decades 

and issues of the choice of prior distribution have 

been quite delicate in data analysis. Procedures for 

assessing informative prior distributions for the 

parameters in Bayesian regression models have been 

put forward by Zellner (1983, 1986), Agliari et al. 

(1988), Fernandez et al. (2001a), Eicher et al. (2007) 

and Raftery et al. (1997). 

 

Prior distributions play very crucial roles in Bayesian 

probability theory as it is attractive to have 

conditional distributions that have a closed form 

under sampling (Okafor, 1999; Rossi et al., 2005). 

Zellner (1983, 1986) proposed a procedure for 

evaluating a conjugate prior distribution referred to as 

Zellner’s informative g-prior, or simply g-prior. The 

g-prior has been vastly used in Bayesian analysis in 

multiple regression models due to the verity that 

analytical results are more readily available, better 

computational efficiency and its simple interpretation 

(Davison, 2008).  

 

In linear regression model analysis in which g-prior 

is used, it has been noted that the choice of a scalar 

hyperparameter g is crucial for the behaviour of 

Bayesian Model Averaging (BMA) procedures. The 

use of BMA provides a natural solution to model 

uncertainties that lead to better predictions than 

simply selecting and using one model (Clyde and 

George, 2004). 

 

The Zellner’s g-prior structure has proven universally 

popular in BMA since it leads to simple closed form 

expressions of posterior quantities and because it 

reduces prior elicitation to the choice of a single 

hyperparameter g. The elicitation of g is subject to 

intense debate (e.g., Liang et al., 2008; Hoeting et al., 

1999; Fernandez et al., 2001a; Eicher et al., 2007) 

and constitutes the focus of this research. The 

approach to prior specification in multiple regression 

models presented here draws inspiration from the 

work of Feldkircher et al. (2012), Fouskakis and 

Ntzowfras (2013), Hanson et al. (2014), and Li and 

Clyde (2015).  

 

The aim of this study is to investigate new sets of g-

priors and propose an improved g-prior for averaging 

in large competing model spaces in the context of 

Bayesian model averaging. The specific objectives of 

the study are to: 

(i) investigate the different informative prior 

distributions referred to as scalar hyper 

parameter g-prior identified in literature 

(ii) investigate some new set of g-priors and to 

propose g-priors specification on parameters 

estimates and also compare the predictive 

performance of these g-priors and 
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(iii) derive both prior distributions and posterior 

distributions of the regression parameters using 

the respective new g-prior investigated and 

obtain posterior quantities for inferences 

 

Materials and Method 

This study gives an overview of the set up of 

Bayesian linear regression model, the techniques of 

Bayesian model averaging methodology as a 

Bayesian solution to the problem of model selection 

and the concepts of Zellner’s g-prior in improving 

predictive ability of Bayesian models. 

 

Bayesian linear regression is an approach to linear 

regression in which the statistical analysis is 

undertaken within the context of Bayesian inference. 

Given a prior distribution, explicit results may be 

obtained for the posterior probability distributions of 

the model's parameters. A Bayesian linear model is 

set up as follows (Lee, 2004): 

(i) A linear regression model with a vector Y 

regressed on a number of explanatory variables 

chosen from a set of k variables in a matrix X of 

dimension n x (k+1), are considered: 
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with β, a vector of unknown regression coefficients 

and ε is the error term having constant variance σ
2
. 

(ii) The likelihood function of β and σ
2
 for the 

model (1) based on the sample is the joint 

probability density function for all the data 

conditional on the unknown parameters (    )   
  ∏  ( |      ) 

    

(  )
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(iii) A Bayesian model builds upon the linear 

regression of Y using conjugate priors by 

specifying  

 (    )   ( |  ) (  )   (    
   ) x 

IG(   )     (         )                            (3) 

Thus, conjugate prior for β and σ
2
 is the normal-

inverse gamma (NIG) probability distribution with 

parameters:          . 

(iv) Inference proceed from the posterior 

distribution: 

 (    | )  
 (    )  ( |    )

 ( )
           (4) 

where  ( )  ∫ (    )  ( |    )      is 

marginal likelihood of the data Y and from (4), all 

required posterior quantities for BMA inference can 

be computed analytically. 

 

Bayesian Model Averaging (BMA) is a technique 

designed to help account for the uncertainty inherent 

in the model selection process; BMA focuses on 

which regressors to include in the analysis. By 

averaging across a large set of models, one can 

determine those variables, which are relevant to the 

data generating process for a given set of priors used 

in the analysis (Hoeting et al., 1999). Given a linear 

regression model with constant term and k potential 

explanatory variables x1, x2,…,   xk of the form: 

                           (5) 

This gives rise to 2k possible sampling models 

(indexed Mj, j = 1,2,...,2k), depending on whether we 

include or exclude each of the regressors. Once the 

model space has been determined, the posterior 

distribution of any coefficient of interest (say   ), 

given the data D is:  

  (  | )  ∑  (  |  )  (  | )  

            (6) 

 

BMA uses each model's posterior probability, 

 (  | ) as weights. Each model (a set of variables) 

receives a weight and the final estimates are 

constructed as a weighted average of the parameter 

estimates from each of the models. BMA includes all 

of the variables within the analysis but shrinks the 

impact of certain variables towards zero through the 

model weights. These weights are the key features for 

estimation via BMA and depend upon a number of 

key features of the averaging exercise including the 

choice of prior specified (Montgomery et al., 2010). 

The posterior model probability of Mj is given by 

Raftery et al. (2010): 

 (  | )   ( |  )
 (  )

 ( )
  ( |  )

 (  )

∑  ( |  ) (  )
  
   

   (7) 

where   ( |  )  ∫ ( |     ) (  |  )               (8) 

and    is the vector of parameters from model Mj, 

 (   |   ) is a prior probability distribution assigned 

to the parameters of model Mj and  (  ) is the prior 

probability that Mj is the true model. 

 

The estimated posterior means and standard 

deviations of  ̂  ( ̂   ̂      ̂ ) for model Mj are 

then constructed, by García-donato et al. (2013), as: 

  [ ̂ |  ]  ∑  ̂ (  | )  

                            (9) 

    [ ̂ |  ]   ∑ (   [  |     ]    

   

                                       ̂ ) (  | )   ,  |  -       (10)  
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Zellner’s g-priors applied in BMA analysis fixes a 

constant g > 0 and specifies the Gaussian prior for the 

regression coefficients β, conditional on σ
2
. Thus, 

Zellner’s g reduces the elicitation of the covariance 

structure by simply choosing the scalar g (Agliari et 

al., 1988). 

 

Assumed model:                          (11) 

with        (      ),    is an identity matrix of 

order n. The likelihood: 
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Thus the parameter g allows for direct weighting of 

the prior, β0, and data,  ̂. This prior is known as 

Zellner’s informative g-prior, or often referred to 

simply as g-prior. The hyperparameter g embodies

how certain a researcher is that the coefficients are 

indeed zero. The value of g corresponds to the degree 

of prior uncertainty (Hanson et al., 2014). The g-prior 

is not only intuitive to use in the model and prior 

definition, but also leads to familiar posterior results 

(Zhang et al., 2008).  

 

2 major considerations for Zellner’s g-prior include: 

(i) Consistency: the choice of g such that posterior 

model probabilities asymptotically uncover the 

“true model” Mj. That is,  

            (   |   )                          . 

(ii) The importance of g as a penalty term enforcing 

parameter parsimony factor  

                                                (   )
     

 . 

 

Given g > 0, it follows a t-distribution with expected 

value   (   |         )  
 

   
 ̂    where  ̂   is the 

standard OLS estimator for the model Mj. 

 

Different values of g have been assigned in the 

context of estimation of the regression coefficients of 

regressors and model sampling for selection. This 

research identified a set of 11 candidate default priors 

(Zellner’s informative g-prior that is based on a 

sample of n observations and k regression 

coefficients of independent variables) advocated in 

the Literature (Eicher et al., 2007), see Table 1. 

 
Table 1: Summary of Identified g-Prior Structures Examined 

S/N Structure of g-Prior Comments/Sources 

1                  Unit Information Prior (UIP) based on number of observations. (Kass and Wasserman, 1996). 

2      (     ) Corresponds to the benchmark prior suggested by Fernandez et al. (2001b). 

3      Conforms to the risk inflation criterion by Foster and George (1994). 

4 
  

 

 
 

It is in the spirit of the” unit information priors" of Kass and Wasserman (1996). 

5 
  

 

 
 

Here, we assign more information to the prior as we have more regressors in the model 

6 

  √
 

 
 

This is an intermediate case, where we choose a smaller asymptotic penalty term for large 

models than in the Schwarz criterion. 

7 

  √
 

 
 

The prior information increases with the number of regressors in the model. (Fernandez et al., 

2001a) 

8     (  ) Asymptotically mimics the Hannan–Quinn criterion with CHQ = 3 (Fernandez et al., 2001b, 

p.395). 

9 
  

 

  (  )
 

The Hannan–Quinn criterion. CHQ = 3 as n becomes large. (Hannan and Quinn, 1979). 

10 
  

  (   )

  ( )
 

Prior information decreases even slower with sample size and there is asymptotic convergence 

to the Hannan–Quinn criterion with CHQ = 1. 

11 
  

 

  
 

This prior is suggested by the risk inflation criterion (RIC). (Foster and George, 1994). 

 

Outlined and adopted are methods and framework 

used by Zellner (1986) to obtain both the prior 

distributions and posterior distributions for multiple 

regression models. Also, the sampling properties in 

terms of the expected mean and variance of posterior 

distributions and consistency properties of g-priors 

based on the results of Zhang et al. (2008) are 

outlined. 
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Prior distributions and posterior distributions using 

Zellner’s g-priors framework for multiple regression 

models parameters: 

Given a regression model: 

                          (19) 

           with         (      )    

The likelihood function for the model is given by 

 (    |    )                 ( 
 

   
(    ) (    )) 

             (20) 

               2 0    (   ̂)
 
   (   ̂)1     3 

             (21) 

where  ̂  (   )     ,     (    ̂) (    ̂) 

and v = n-k. 

Given anticipated values of β and σ
2
 denoted by βa 

and   
 , respectively, from a conceptual or imaginary 

sample:                             (22) 

 

The joint informative g-prior distribution is:  

  (     |   )       (   )   2 
  ̅ 
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             where      
  (  

    ̅     ).  

The marginal prior distributions for β and σ are 

respectively:  (  |       )     *  ̅ 
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Similarly, based on the results of Zellner (1986) on 

posterior distribution for β and σ given a g-prior 

distribution, posterior distributions for β and σ: 

       
 (    |  )      (   )  (    |  )                   (26) 

     (     )   { [(    ) (    )  

 (   ̅)    (   ̅)]    }         (27) 

D denotes the data and  ̅ is the prior mean vector for 

regression coefficient vector  . 

Let    .    
 

    ̅   /    and      .     
 

     / 

Then the terms in square brackets in the exponential 

can be expressed as: 

(    ) (    )  (    ̿)
 
(    ̿)  

                                                         (   ̿)
 
   (   ̿)    (28) 

where   ̿  (   )       
Thus (27) can be expressed as:  

 (    |  )       (     )   2 0(    ̿)
 
(    ̿)  

                                      (   ̿)
 
   (   ̿)1     3        (29) 

where  ̿  (   )      ( ̂    ̅) (   )  
This is the mean of the posterior distribution with 

 ̂  (   )     . 

 

The covariance matrix of the conditional normal 

posterior distribution for β given σ, denoted by 

 (  |    ), is 

 (  |    )  (   )               (30) 

        (   )     (   )          (31) 
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(    ̿)

 (   ̿)
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         (32) 

with covariance matrix 

 (  |  )  (   )     (   )     (   )         (33) 

where (   )   (    ̿)
 (    ̿)

                     

          (    ̿) (    ̿)   ( ̿   )
 
   ( ̿   )        (34) 

Also, the marginal posterior distribution for σ 

obtained from (29) by integrating with respect to β, is  

 (  |  )       (   )   2 (    ̿)
 
(    ̿)    3 

        (35) 
 

Sampling properties of the mean of the posterior 

distribution using Zellner’s g-priors framework in 

multiple regression models: 

The expected means of  ̿ is given by: 

  ̿  (     ̅) (   )          (36) 

where    is the true unknown value of the regression 

coefficient vector. The bias of  ̿: 

    ( ̿)    ̿        ( ̅    ) (   )         (37) 

The second moment matrix of  ̿     is:  

 ( ̿      )( ̿      )   ( ̂) (   )   ( ̿) ( ̿)  

               (38) 

with  ( ̂)  (   )    , the covariance matrix of 

the least squares estimator. 

The variance-covariance matrix of  ̿ is:  

 ( ̿     ̿)( ̿     ̿)   ( ̂) (   )          (39) 

 

Results and Discussion 

Based on the methods above and relying on the 

results of Zellner (1986) on prior and posterior 

distributions for multiple regression models, the 

respective prior and posterior distributions for β and σ 

were obtained using each of the proposed g-prior 

structures investigated. Also, the sampling properties 

in terms of the expected mean and variance of the 

posterior distributions were obtained using each 

proposed g-prior structures investigated. 
 

The prior and posterior distributions for β and σ using 

the proposed g-prior,        : 

Before observing Y, a conceptual or imaginary sample 

is considered such that: 

                            (40) 

Let βa and   
 

 
denote anticipated values of β and σ

2
, 

respectively, from the conceptual/imaginary sample.  

The joint informative g-prior distribution using 
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The marginal prior distributions for β and σ are 

respectively: 

 .  |    .
 

  
/   /      2  ̅ 

   .
 

  
/ (    )    (  

  )3
 (   )  

                         (42) 

and  (  |  ̅   )       (   )   *   ̅ 
     +         (43) 

The posterior distribution for β and σ: 

 (    |  )      (   )  (    |   )         (44) 
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D denotes the data and  ̅ is the prior mean vector for 

regression coefficient vector β. 

Let    4  
  .

 

  
/
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Then the terms in square brackets in the exponential 

can be expressed as 

(    ) (    )  (    ̿)
 
(    ̿)  

                                                        (   ̿)
 
   (   ̿)     (46) 

where   ̿  (   )       
Thus (45) becomes:   
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   (   ̿)1     3                  (47) 
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This is the mean of the posterior distribution with 

 ̂  (   )      . 

 

The covariance matrix of the conditional normal 

posterior distribution for β given σ, denoted by 

 (  |    ), is   (  |    )  (  
   )

            (48) 

   (   )    (  .
 

  
/)⁄         (49) 

The marginal posterior distribution for β obtained 

from (47) by integrating with respect to σ, is  

  (  |  )     2(      ̿)
 
(      ̿)  

                                (   ̿)
 
  

   (   ̿)3
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with covariance matrix:  

 (  |  )  (  
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     (   )    (  .
 

  
/)⁄      (51) 

Also, the marginal posterior distribution for σ 

obtained from (47) by integrating with respect to β is  

 (  |  )       (   )   2 (      ̿)
 
(      ̿)    3 

        (52) 

 

Sampling properties of the mean of the posterior 

distribution: 

The expected mean of  ̿

 

using   
 

  
 

 

is given by: 
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where    is the true unknown value of the regression 

coefficient vector.  

The bias of   ̿:  
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The second moment matrix of  ̿     is:  
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with  ( ̂)  (   )    , the covariance matrix of 

the least squares estimator. 

The variance-covariance matrix of  ̿ is: 

 ( ̿     ̿)( ̿     ̿)   ( ̂) (  .
 

  
/)
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The prior and posterior distributions for β and σ using 

the proposed g-prior,   (   ): 

The joint informative g-prior distribution using 

  √
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The marginal prior distributions for β and σ are 

respectively: 
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and   (    |  )      (   )  (    |   )                 (59) 

Similarly, the posterior distribution for β and σ: 
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D denotes the data and  ̅ is the prior mean vector for 

regression coefficient vector  . 

Let   
  4  

  .
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Then the terms in square brackets in the exponential 

can be expressed as: 
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Thus (61) becomes:  

 (    |  )       (     )   2 0(      ̿)
 
(   

   ̿)  (   ̿)
 
  

   (   ̿)1     3                 (63) 

where  ̿  (  
   )

    
    4 ̂  .

 

 
/

 

 
 ̅5  4  .

 

 
/

 

 
5 

is the mean of the posterior distribution with 

 ̂  (   )      . 
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The covariance matrix of the conditional normal 

posterior distribution for β given σ, denoted by  
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coefficient vector.  
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The prior and posterior distributions for β and σ using 

the proposed g-prior,      .  

The joint informative g-prior distribution using  
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The posterior distribution for β and σ: 
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with  ( ̂)  (   )    , the covariance matrix of 

the least squares estimator. 

The variance-covariance matrix of  ̿ is:  
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The prior and posterior distributions for β and σ using 

the proposed g-prior,      : 

The joint informative g-prior distribution using 
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The marginal prior distributions for β and σ are 

respectively: 
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The posterior distribution for β and σ: 
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D denotes the data and  ̅ is the prior mean vector for 

regression coefficient vector β. 
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Then the terms in square brackets in the exponential 

can be expressed as 
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This is the mean of the posterior distribution with  
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The covariance matrix of the conditional normal 

posterior distribution for β given σ, denoted by  
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The marginal posterior distribution for β obtained 

from (95) by integrating with respect to σ, is: 
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Also, the marginal posterior distribution for σ 

obtained from (95) by integrating with respect to β, is:  
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Sampling properties of the mean of the posterior 

distribution: 

The expected mean of  ̿
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  is given by: 
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where    is the true unknown value of the regression 

coefficient vector.  

The bias of   ̿:  
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with  ( ̂)  (   )    , the covariance matrix of 

the least squares estimator. 

The variance-covariance matrix of  ̿ is: 
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The prior and posterior distributions for β and σ using 

the proposed g-prior,    (   ): 
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respectively: 
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The posterior distribution for β and σ: 
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D denotes the data and  ̅ is the prior mean vector for 

regression coefficient vector β. 

Let   
  4  

  .
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Then the terms in square brackets in the exponential 

can be expressed as 
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from (109) by integrating with respect to σ, is  

 (  |  )     2(      ̿)
 
(      ̿)  

                                  (   ̿)
 
  

   (   ̿)3
 (   )  

    (114) 

with covariance matrix:  

 (  |  )  (  
   )

     (   )    4  .
 

 
/

 

 
5⁄   (115) 

Also, the marginal posterior distribution for σ 

obtained from (109) by integrating with respect to β, 
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where    is the true unknown value of the regression 

coefficient vector.  

The bias of   ̿:  
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The second moment matrix of   ̿     is:  

 ( ̿      )( ̿      )
 
 

 ( ̂)

(  .
 

 
/

 
 )

   ( ̿) ( ̿)       (119) 

with  ( ̂)  (   )    , the covariance matrix of 

the least squares estimator. 

The variance-covariance matrix of  ̿ is: 
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The posterior distribution for β and σ: 
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Then the terms in square brackets in the exponential 

can be expressed as  
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The marginal posterior distribution for β obtained 

from (125) by integrating with respect to σ, is  
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 Also, the marginal posterior distribution for σ 

obtained from (125) by integrating with respect to β, 

is  (  |  )       (   )   2 (      ̿)
 
(      ̿)    3 

            (132) 
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Sampling properties of the mean of the posterior 

distribution: 

The expected mean of  ̿
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where    is the true unknown value of the regression 

coefficient vector.  
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The variance-covariance matrix of  ̿ is: 
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The effects of the set of g-priors were examined using 

datasets provided by FLS (Fernandez, Ley and Steel, 

2001a). The analysis was based on n = 72 

observations with k = 41 set of regressors or possible 

variables. To analyse these data, uniform model prior 

was applied as the model prior for the model space 

across parameter g-prior structures investigated.  

 
Table 2: The Effects of g-Prior Structures on Predicted 

Values compared with its Actual Value  

S/N g-prior Actual 

Value 

Predicted 

Value 

LPS 

1     0.0046 0.0013 –3.716 

2      (    ) 0.0046 0.0021 –3.649 

3      0.0046 0.0021 –3.649 

4   
 

 
 0.0046 0.021 –2.603 

5   
 

 
 0.0046 0.016 –2.917 

6 
  √

 

 
 

0.0046 0.02 –2.683 

7 
  √

 

 
 

0.0046 0.015 –2.981 

8     (  ) 0.0046 0.031 –3.633 

9 
  

 

  (  )
 

0.0046 0.021 –2.653 

10 
  

  (   )

  ( )
 

0.0046 0.0145 –3.019 

11   
 

  
 0.0046 0.0214 –2.592 

12 
  

 

  
 

0.0046 0.0033 –3.614 

  
Given the model space 2

41
 = 2.2 x 10

12
 and with a 

fairly large amount of drawings (5 million), Markov 

Chain Monte Carlo Model Composition (MC
3
) 

sampler was applied to adequately identify the high 

posterior probability models. The Bayesian analysis 

was carried out using Bayesian model averaging 

package “BMS” available in the statistical software 

R. The study compares the predictive abilities of 

different g-priors from the Literature (see Table 1) 

and the 6 proposed g-prior structures investigated. 

Table 2 shows the results for the 11 g-prior structures 

(Table 1) and the most reliable and consistent g-prior 

structure among the proposed 6 g-prior structures. 

 

The log predictive score (LPS) is a scoring rule for 

assessing predictive performance and a smaller value 

of LPS makes a Bayes model a prior choice for g that 

is preferable (Kadane and Lazar, 2004).  

 

The results from Table 2 show that the actual value of 

the dependent variable of the 72
nd

 observation is best 

predicted by a new g-prior,         based on the 

predicted and actual values and having one of the 

lowest LPS, though preceded by g-prior serial number 

(S/N: 1, 2 and 3).  

 

Conclusion 

The study investigated 11 g-priors identified in the 

Literature and 6 new g-priors proposed. The 

reliability and consistency of the predictive ability of 

a new g-prior structure,       

 

vis-à-vis the actual 

value of the dependent variables, predicted values of 

the dependent variables and corresponding LPS was 

demonstrated. 

 

Based on the framework and methods enumerated, 

the prior distributions and posterior distributions of 

the regression parameters were obtained for the 

proposed 6 g-prior structures investigated. The 

sampling properties in term of the expected mean and 

variance of the posterior distribution were obtained 

for the respective g-prior structures investigated. The 

new proposed g-prior,       , exhibited a reliable, 

consistent, competitive and predictive performance 

and offers a sound, fully Bayesian approach that  

features the virtues of prior input and predictive gains  

that minimises the risk of misspecification. 
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